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AI Advances in Recent Years



Can we trust AI  
in real applications?



AI in Safety-Critical Applications



AI in Safety-Critical Applications

Stakes are 

high!



AI Security is becoming  
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AI Security is becoming  
increasingly important



Study ML vulnerabilities and  
develop secure AI for high-stakes problems

MLsploit Goal



When and why does ML fail?

�≈
Training Data Testing Data

Common 
assumption
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Data Poisoning



Data Poisoning in Real World
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Adversarial Examples



Adversarial Examples

Input Image

Trained Model

Panda 
57.7% confidence

[Goodfellow et al. ICLR 2015]



Adversarial Examples

Input Image

Trained Model

Panda 
57.7% confidence

+ .007 x =

😈  
adversarial noise

Gibbon 
99.3% confidence

[Goodfellow et al. ICLR 2015]



Why is Adversarial Example a Threat? 

3D-printed object that 
fools an image classifier

[Athalye et al. ICML’18] 

Physical stop sign that 
fools traffic sign recognition

[Chen et al. ECML-PKDD’18] 

Physical t-shirt that fools 
security camera

[Cornelius  et al. DSML’19] 



Adversarial Examples Beyond Vision

Anti 
Virus

Malware

Malware

Benign 
App

[Carlini & Wagner. DLS 2018]

[Jung et al. Black Hat 2017]

Audio  
Attack

Android 
Malware😈
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MLsploit 
★ Research modules for adversarial ML 

✴ Enables comparison of attacks and defenses 

★ Interactive experimentation with ML research 

★ Researchers can easily integrate novel research into 
an intuitive and seamless user interface



MLsploit 
★ AVPass (leaking and bypassing Android malware detection systems) 
★ ELF (bypassing Linux malware detection with API perturbation) 
★ PE (create and attack ML models for detecting Windows PE malware) 

★ Intel®-Software Guard Extensions 
(privacy preserving adversarial ML as a service) 

★ SHIELD (attack and defend state-of-the-art image classification models) 
✴ Attacks: FGSM, DeepFool, Carlini-Wagner 
✴ Defenses: SLQ, JPEG, Median Filter, TV-Bregman
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MLsploit 
ARCHITECTURE



ONE-STEP INSTALLATION

docker-compose up --build



EASY INTEGRATION OF RESEARCH

            mlsploit.Job

Research Module
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