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Advances In Recent Years
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Can we trust Al
in real applications?
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Goal

Study ML vulnerabilities and
develop secure Al for high-stakes problems



When and why does ML fail?

Training Data Testing Data

Common
assumptlon
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Data Poisoning in Real World

Microsoft silences its new A.l. bot Tay, after
Twitter users teach it racism [Updated]

Sarah Perez @sarahintampa / 3 years ago
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Adversarial Examples
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Why is Adversarial Example a Threat?
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3D-printed object that Physical stop sign that Physical t-shirt that fools

fools an image classifier  fools traffic sign recognition security camera
[Athalye et al. ICML’18] [Chen et al. ECML-PKDD’18] [Cornelius et al. DSML’19]



Adversarial Examples Beyond Vision

OPEN INTEL DOT COM
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Malware
, App

Audio
Attack

[Carlini & Wagner. DLS 2018]

Android
"' Malware
[Jung et al. Black Hat 2017]
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A Framework for Interactive Experimentation
with Adversarial Machine Learning Research

Contributors from Intel Science and Technology Center for Adversary-Resilient Security Analytics:
Nilaksh Das, Siwei Li, Chanil Jeon, Jinho Jung®, Shang-Tse Chen*, Carter Yagemann*, Evan
Downing*, Haekyu Park, Evan Yang, Li Chen, Michael Kounavis, Ravi Sahita, David Durham,
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MLsploit

* Research modules for adversarial ML
* Enables comparison of attacks and defenses

* |Interactive experimentation with ML research

* Researchers can easily integrate novel research into
an intuitive and seamless user interface



MLsploit

L D S S o

AVPass (leaking and bypassing Android malware detection systems)
ELF (bypassing Linux malware detection with APl perturbation)

PE (create and attack ML models for detecting Windows PE malware)

Intel®-Software Guard Extensions

(orivacy preserving adversarial ML as a service)
SHIELD (attack and defend state-of-the-art image classification models)

*  Attacks: FGSM, DeepFool, Carlini-Wagner
*  Defenses: SLQ, JPEG, Median Filter, TV-Bregman
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FUNCTIONS




RESTful Job
API Scheduler

MLsploit

| ARCHITECTURE

Research Worker
Modules Instances



ONE-STEP INSTALLATION




EASY INTEGRATION OF RESEARCH

G‘ misploit.Job



EASY INTEGRATION OF RESEARCH

G‘ misploit.Job



@ MLSploit X | +

R rn@Evmeo ®» =
MLsploit Attack Pipeline h

» Run # Edit [J Duplicate X Delete [} View Sample Files

# Upload Samples

FINISHED FINISHED
- attack-resnet50_v2-fgsm - evaluate-resnet50_v2
Q epsilon: 4

© Download Selected Completed (hover to show log)
® Select All O Deselect All @ Add Tags

[P Duplicate ® Delete

trace-c.zip barnum
trace-a.zip barnum Attack-Defend Pipeline (JPEG)
trace-b.zip barnum

» Run # Edit [J Duplicate X Delete [) View Sample Files
trace-d.zip barnum

input.zip R FINISHED FINISHED FINISHED
samples.zip pe - attack-resnet50_v2-fgsm - defend-jpeg = evaluate-resnet50_v2

samples-new.zip pe epsilon: 4 quality: 60

video.zip
Completed (hover to show log)
v/ testshield.zip accuracy

Attack-Defend Pipeline (SLQ)
» Run # Edit [J Duplicate X Delete [) View Sample Files

FINISHED FINISHED FINISHED
> attack-resnet50_v2-fgsm > defend-slq > evaluate-resnet50_v2
epsilon: 4

Completed (hover to show log)
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